


Oxygen and ABG

Dr Will Dooley

Oxygen and ABGs... Simply in 10 cases

- Recap of:
 - ABG interpretation
 - Oxygen management
- Some common concerns
 - A-a gradient
 - Base Excess
 - Anion Gap
 - COPD patients
 - CPAP/BiPAP

First Case...

• 68yo man walks into A&E with mild breathlessness and productive cough. He has no PMH.

What would be your management?

- ABCDE
- Ex-talking to you, no signs of distress, creps in left base

BP 118/70 HR 105 RR 20 Sats 91%

STEP 1: HOW IS THE PATIENT?

68yo. No PMH. Mild SOB/cough. RR 20 Sats 91% OA

Is the patient critically ill or 0₂ Sats <85% ? NO

Is patient at risk of hypercapnia?

		Target Sats	Starting Device
NO	\rightarrow	94-98%	Nasal Cannula (2-6L/m)
			or Face Mask (5-10L/m)

... and do an Arterial Blood Gas

Face Mask Variable O_2 of 35-60%. Flow 5-10 L/min

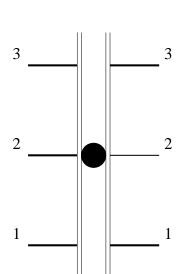
> Nasal Cannulae Variable O₂ of 24-50% Flow 2-6L/min

Case 1: Arterial Blood Gas

рН	7.43
pCO ₂	4.0 kPa
pO ₂	11.1 kPa
HCO ₃	24 mmol/L
BE	0 mmol/L

Normal values (7.35 – 7.45) (4.7 – 6.0 kPa) (>10kPa) (22-26 mmol/l) (+/-2.0 mmol/l)

CO₂ low and not acidotic


Keep with target sats 94-98%

(continue to treat as low risk hypercapnia)

Oxygen Flow Meter

Prescribe

DRUG OXYGEN (Refer To Trust Oxygen Policy)		
Circle target oxygen saturation 88-92% 94-98% Other	STOP DATE	
Starting device/flow rate <u>2-4 L/min, NRM</u> PRN /Continuous		
	PHARM	
(Saturation is indicated in almost all cases except for palliative terminal care)		
SIGNATURE / PRINT NAME	DATE 06/03/19	

Case number 2...

A 68yo man comes by ambulance to A&E. Wife called ambulance as concerned that husband very unwell and breathless. *Has known COPD (states similar to previous exacerbation)*

What would be your management?

- ABCDE
- Ex: distressed, widespread polyphonic wheeze

BP 125/85 HR 120 RR 29 Sats 78%

STEP 1: HOW IS THE PATIENT?

68yo COPD. SOB. Wheeze. RR 29 HR 120 Sats 78% OA.

Is the patient critically ill or 0₂ sats <85% ?

Variable O₂ of 60-80% ALWAYS at 15 L/min flow Effective for short term treatment Uncomfortable as high flow

High Flow/Non Re-breath Mask 15 L/min oxygen

YES

Then do Arterial Blood Gas

ABG of our unwell case...

68yo, acute exacerbation of his known COPD

What does this ABG show?

pН	7.20
PaCO ₂	10.9 KPa
$Pa0_2$	7.6 KPa
HCO ₃	30 mmol/
BE	3.0
(on 15L/min)	

(7.35 - 7.45)(4.7 - 6.0 kPa)(>10kPa) $(1 \quad (22-26 \text{ mmol/l}))$ (+/-2.0 mmol/l)

Type 2 respiratory failure Acidosis- Respiratory Compensating- Metabolic

STEP 2: ASSESS OXYGENATION

<u>**ON AIR**</u>: PaO_2 should be >10 kPa

OR

<u>ON OXYGEN</u>: <10kPa less than the % inspired concentration

e.g. 15 L/min delivers approx. 50-60% O_2 so should have PaO2 of ~40

Respiratory Failure

- Type 1 ONE Problem
- **Type 2** TWO Problems

 $PaO_2 < 10kPa$

 $PaO_2 < 10kPa$ $PaCO_2 > 6.0 kPa$

70yo man walks into A&E with breathlessness and productive cough. She has known COPD and has had previous ITU admissions with *"problems with the gases in my blood"*

What would be your management?

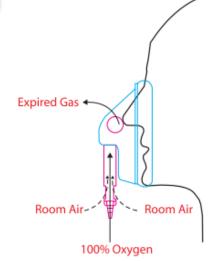
- ABCDE
- Ex- talking to you, no signs of distress, widespread polyphonic wheeze

BP 145/90 HR 105 RR 20 Sats 87%

Case 3: Oxygen Therapy

70yo COPD. Mild SOB/cough. Wheeze. RR20 HR105 Sats 87% OA

Is the patient critically ill or 0₂ sats <85% ? NO


Is patient at risk of hypercapnia?

Target SatsStarting DeviceYES →88-92%Venturi 24%

... and do an Arterial Blood Gas

Venturi Mask Deliver fixed oxygen 24-40%

Colour Coded Venturi Masks

Colour of Mask attachment	Oxygen (%)	Rate of Oxygen L/Min
Blue	24	2-4
White	28	4-6
Yellow	35	8-10
Red	40	10-12
Green	60	12-15
Green	60	12-15

Prescribe

DRUG OXYGEN (Refer To Trust Oxygen Policy)		
Circle target oxygen saturation 88-92% 94-98% Other	STOP DATE	
Starting device/flow rate 24% Venturi PRN Continuous 2L/min	PHARM	
(Saturation is indicated in almost all cases except for palliative terminal care)		
SIGNATURE / PRINT NAME	DATE 06/03/19	

70yo COPD. Mild SOB/cough. Wheeze. RR20 HR105 Sats 87% OA ... Arterial blood gas

1	pН	7.42
	pCO ₂	7.1
	pO ₂ HCO ₃	14.3
	HCO ₃	27

CO₂ elevated (>6.0kPa) and pH normal Continue with target sats 88-92%

DO NOT STOP THEIR OXYGEN due to hy	percapnia
HYPOXIA KILLS!	

CO₂normal and not acidotic Change to target sats 94-98% (*Treat as low risk hypercapnia*)

7.38

5.9

15.1

24

Normal values (7.35 – 7.45) (4.7 – 6.0 kPa) (>10kPa) (22-26 mmol/1) (+/-2.0 mmol/1)

2

pН

 pCO_2

HCO₃

 \mathbf{pO}_2

Repeat ABG in 30-60mins

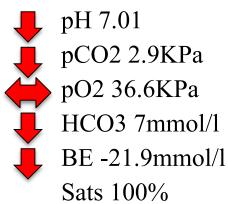
3	pН	7.21
	pCO ₂	8.0
	pO ₂	7.8
	HCO ₂	30

CO₂ elevated (>6.0kPa) and acidotic Consider NIV ... i.e. Get help!

Alert Card

	OXYG	EN ALERT CARD
Name:		
am at risk of typ	e II respi	ratory failure with a raised CO ₂ level.
		nturi mask to achieve an oxygen % during exacerbations.
Use compressed	air to dri	we nebulizers (with nasal oxygen at 2
	r not avai	ilable, limit oxygen-driven nebulizers

Tracheostomy masks


Case 4

An 18-year-old insulin dependent diabetic is admitted to the emergency department. He has been vomiting for 48h and because he was unable to eat, he has taken no insulin.

Breathing spontaneously RR 35 /min SpO2 98% P 130 /min, BP 90/65 mmHg GCS 12 (E3, M5, V4)

What would you expect the ABG to reveal?

ABGs on 151/min are:

METABOLIC ACIDOSIS WITH PARTIAL RESPIRATORY COMPENSATION

pH7.35 - 7.45pO2>10 kPa on airPCO24.7-6.0 kPaHCO322 - 26 mmol/1BE+/- 2 mmol/1

BM 30 mmol/l Urine ketones +++ in the urine

STEP 3: pH STEP 4: RESPIRATORY COMPONENT STEP 5: METABOLIC COMPONENT

Normal pH = 7.35-7.45

pH
$$\underbrace{\text{bicarb}}_{\text{CO}_2}$$

Take your time

Analyse pCO_2 and HCO_3 separately related to the pH

 pCO_2 opposite way as pH HCO_3 same way as pH

(high CO_2 = Acidosis) (high HCO_3 = Alkalosis)

Beware of mixed and compensatory change

Base Excess

Alternative to HCO3- but **SAME** information Changes more acutely than bicarbonate

The normal base excess is +/- 2 mmol/l

- Base excess > +2 = metabolic alkalosis
- Base excess < -2 = metabolic acidosis

Case 5... Same hx as Case 4: DKA patient

18-year-old T1 DM unwell with DKA

Biochemistry on admission: Na⁺ 136 K⁺ 4.8 Cl⁻ 101 urea 8.1

Reminder of the ABG: pH 7.01 pCO2 2.9 pO2 36.6 HCO3 7 BE -21.9

What's the anion gap? Does it fit with our diagnosis?

Anion Gap

ONLY DO IN METABOLIC ACIDOSIS

• Calculates level of unmeasured anions

Anion Gap = *MEASURED* Positive ions – *MEASURED* Negative ions = $Na^+ - (Cl^- + HCO3^-)$

<u>Normal = 6-12</u>

High anion gap

- Lactic / Keto- / Urate- acidosis

Normal anion gap

- Diarrhoea, Renal tubal acidosis

Case 5 continued

Biochemistry on admission: <u>Na⁺ 136</u> K⁺ 4.8 <u>Cl⁻ 101</u> urea 8.1

Reminder of the ABG: pH 7.01 pCO2 2.9 pO2 36.6 <u>HCO3 7</u> BE -21.9

What's the anion gap? Anion Gap = Na – (Cl + HCO3) Does it fit with our diagnosis?

Anion Gap = Na - (Cl + HCO3) = 136 - (101 + 7) = 28 HIGH ANION GAP

Case 6

A 64yo lifelong smoker is seen in outpatients clinic with a 2 year history of worsening cough and exertional dysphoea. Walks into clinic room.

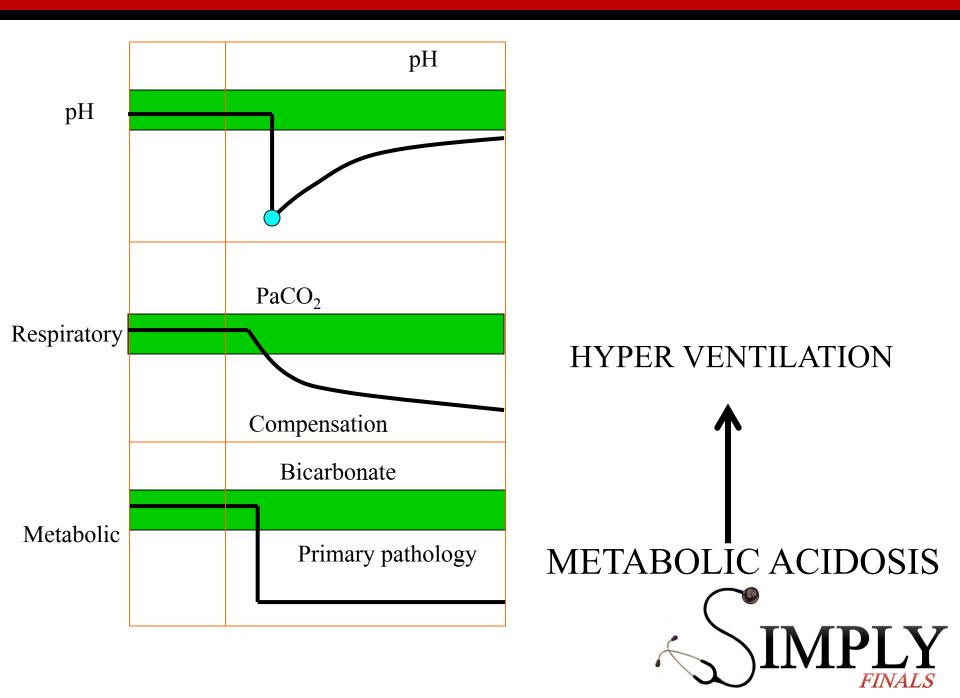
ABG on room air:

	рН 7.37
	PaCO2 6.9KPa
┛	Pa02 7.1KPa
$\mathbf{\dot{\mathbf{+}}}$	HCO3 33mmol/l
$\overline{\bullet}$	Base excess + 8.9mmol/
_	Sats 89%

NORMAL VALUES

рН	7.35 – 7.45
paO2	>10 kPa on air
PaCo2	4.7-6.0 kPa
Bicarb	22 – 26 mmol/l
BE	+/- 2 mmol/l

- 1. Type 2 Respiratory Failure
- 2. **Respiratory Acidosis**
- 3. METABOLIC COMPENSATION (CHRONIC)



Response to correct initial problem

Will not "over" compensate

Respiratory = quick Metabolic = slow

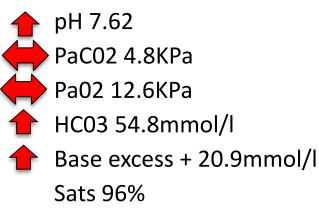
Case 7 : Same hx as Case 6

A 64yo lifelong smoker is seen in outpatients clinic with a 2 year history of worsening cough and exertional dyspnoea. Walks into clinic room.

- **1. TYPE 2 RF**
- 2. RESPIRATORY ACIDOSIS WITH METABOLIC COMPENSATION (CHRONIC)

Would you expect this patient to have high / low / normal Aa gradient?

A-a Gradient


- Evaluates the CAUSE of hypoxaemia
- Measure of the difference between Alveolar oxygenation and arterial oxygenation
- Normal Aa = extra-pulmonary problem, for example:
 - Hypoventilation (Neuromuscular disorders / CNS disease / sedation)
 - Low inspired FiO2 (high altitude)
- Raised Aa = intra-pulmonary problem, for example:
 - R to L shunt (CCF / ARDS)
 - V/Q mismatch (PE / COPD / pneumonia / pneumothorax / asthma / atelectasis)
 - Alveolar hypoventilation (interstitial lung disease)
- <u>Normal = 5-10</u>
- A-a gradient = PaO2 FiO2 x (760-47) (PaCO2/0.8)

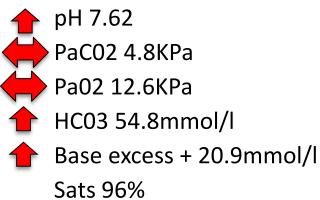
A 78yo man attends A&E with a 3 month history of weight loss and a sensation of 'early fullness' on eating. This is now associated with a four day history of worsening 'projectile' vomiting.

ABG on room air

NORMAL VALUES

рН	7.35 – 7.45
paO2	>10 kPa on air
PaCo2	4.7-6.0 kPa
Bicarb	22 – 26 mmol/l
BE	+/- 2 mmol/l

METABOLIC ALKALOSIS


What could the cause be?

Case 8 (alternative history)

A 3 week old baby is brought to A&E with projectile vomiting and poor weight gain.

ABG on room air

WHAT IS THE MOST LIKELY CAUSE?

Case 9

рН	7.21
pCO2	7.3 kPa
pO2	5.9 kPa
HCO3	14.6 mmol/l
BE	-7.9 mmol/L
Sats	76%

NORMAL VALUES

рН	7.35 – 7.45
paO2	>10 kPa on air
PaCo2	4.7-6.0 kPa
Bicarb	22 – 26 mmol/l
BE	+/- 2 mmol/l

Type 2 Respiratory Failure MIXED ACIDOSIS Both Respiratory and Metabolic component

Cause?

Case 10: CPAP or BiPAP?

You are FY1 on August 2nd 2017

Nurse calls...

- "68yo COPD patient becoming unwell and now very short of breath.
- What would you like to do doctor, CPAP or BiPAP?"

What would you do??

Case 10: Management

- ABCDE
- Give high flow O2
- See the notes / involve the patient
- Hx / Ex
- Basic investigations ABG, ECG, Bloods, CXR
- Institute initial management
- Get Help!

Non-Invasive Ventilation

Avoids intubation. Can easily apply & remove.

Contraindications

- Patient declines- is uncomfortable
- Patient very confused
- High aspiration risk
- Facial trauma

Should show ABG or clinical improvement within 2 hours

Non-Invasive Ventilation

<u>CPAP</u> (Continuous) Oxygenation

Type **1** RF e.g. LVF/CCF Chest wall trauma

Continuous pressures "Breathing into wind tunnel" BiPAP (Bi-Level) Ventilation

Type 2 RF e.g. COPD with Acidosis Decompensated OSA

IPAP/EPAP pressures "Senses inspiration" Pushes O₂ in and CO₂ out

Long term Oxygen Therapy

- Indicated in Chronic hypoxaemia
 - pO2 consistently <7.3kPa or 7.3-8.0 with polycythhaemia / peripheral oedema / nocturnal hypoxaemia / pulm HTN
 - Also indicated in nocturnal hypoventilation / palliative care
- Background lung disease e.g. COPD/CF/bronchiectasis/CCF
- Need smoking cessation
- Use for >15hrs / day
- Increases survival

ABG interpretation: 5 step approach

- STEP 1 HOW IS THE PATIENT?
- STEP 2 ASSESS OXYGENATION
- STEP 3 pH- ACIDOSIS VS ALKALOSIS
- STEP 4 RESPIRATORY COMPONENT
- STEP 5 METABOLIC COMPONENT

Summary

- Make sure you look at the clinical scenario
- Be systematic and always use a system to analyse
- Hypoxia kills

Respiratory

Acidosis (PaCO2>6.0kPa)

Hypoventilation

T2 RF-Impaired gas exchange

- COPD
- Heroin OD
- Chest wall defect
- Resp. muscle weakness

e.g. G.Barre

Alkalosis (PaCO2<4.7kPa)

Hyperventilation due to

- Anxiety
- Hypoxemia
- Metabolic acidosis
- Neurologic Lesions
- Trauma
- Infection

Metabolic

Acidosis (HCO3 <22mmoll/l)

- DM Ketoacidosis
- Urate acidosis (Renal failure)
- Lactic Acidosis
 Decreased perfusion
 Severe hypoxemia/sepsis
- Drugs (e.g. Salicylates)

*Anion gap

Alkalosis (HCO3 >26mmoll/l)

- XS loss (e.g. Vomiting)
- Ingestion of alkali

