

Oxygen and ABG

Dr William Dooley

Plan

- Oxygen and ABG in 10 cases
- Recap of ABG interpretation / Oxygen management
- Some common concerns
 - A-a gradient
 - Base Excess
 - Anion Gap
 - COPD patients
 - CPAP/BiPAP

First Case...

• 68yo man walks into A&E with mild breathlessness and productive cough. He has no PMH.

What would be your management?

- •ABCDE
- •Hx- as above
- •Ex- talking to you, no signs of distress, creps in left base

BP 118/70 HR 105 RR 20 Sats 91%

Oxygen Therapy

68yo. No PMH. Mild SOB/cough. Wheeze. 118/70 RR20 HR105 Sats 91% OA

Is the patient critically ill or 0₂ sats <85% ? NO

Is patient at risk of hypercapnia?

	Target Sats	Starting Device
NO →	94-98%	Nasal Cannula (2-6L/m)
		or Face Mask (5-10L/m)

YES → 88-92%

Venturi 24%

... and do an Arterial Blood Gas

Oxygen masks

- Variable O_2 of 35-60%.
- Flow 5-10 L/min
- Comfortable
- Low cost
- Interfere with eating
- Easy displacement
- Increased aspiration by concealment of vomitus

Nasal cannula

- Variable O_2 of 24-50%
- Flow 2-6L/min
- Convenient
- Patient preference
- Easily tolerated
- Nasal breathing
- Drying of mucosa and epistaxis

Oxygen Flow Meter

Arterial Blood Gas

		Normal values
pН	7.43	(7.35 – 7.45)
pCO ₂	4.0	(4.7–6.0 kPa)
pO_2	11.1	(>10kPa)
HCO ₃	24	(22-26 mmol/l)
11003		(+/-2.0 mmol/l)

CO₂ low and not acidotic

Keep with target sats 94-98%

(Treat as low risk hypercapnia)

Prescribe

DRUG OXYGEN (Refer To Trust Oxygen Policy)		
Circle target oxygen saturation 88-92% 94-98% Other	STOP DATE	
Starting device/flow rate <u>2-4 L/min, NRM</u> PRN /Continuous		
	PHARM	
(Saturation is indicated in almost all cases except for palliative terminal care)		
SIGNATURE / PRINT NAME	DATE 10/02/16	

Case number 2...

A 68yo man comes by ambulance to A&E. Wife called ambulance as concerned that husband very unwell and breathless. *Has known COPD (states similar to previous exacerbation)*

What would be your management?

- ABCDE
- Hx: as above
- Ex: distressed, widespread polyphonic wheeze
- Vital observations:

BP 125/85 HR 120 RR 29 Sats 78%

Oxygen Therapy

Step 1 HOW IS THE PATIENT?

68yo COPD. SOB. Wheeze. RR 29 HR 120 Sats 78% OA.

Is the patient critically ill or 0₂ sats <85% ? YES

Variable O₂ of 60-80% Effective for short term Uncomfortable High Flow High Flow/Non Re-breath Mask 15 L/min oxygen

Than da Antamial

ABG of our first unwell case...

68yo, acute exacerbation of his known COPD, following this ABG.

What does this ABG show?

pН	7.20
PaCO ₂	10.9 KPa
$Pa0_2$	7.6 KPa
HCO ₃	30 mmol/1
BE	3.0
(on 15L/min)	

(7.35 - 7.45)(4.7 - 6.0 kPa)(>10kPa) $(1 \quad (22-26 \text{ mmol/l}))$ (+/-2.0 mmol/l)

Type 2 respiratory failure Acidosis- Respiratory Compensating- Metabolic

Step 2: Assess Oxygenation

<u>ON AIR</u>: PaO₂ should be >10 kPa (75mmHg)

OR


<u>ON OXYGEN</u>: <10kPa less than the % inspired concentration

e.g. 15 L/min delivers approx. 50-60% O_2 so should have PaO2 of ~40

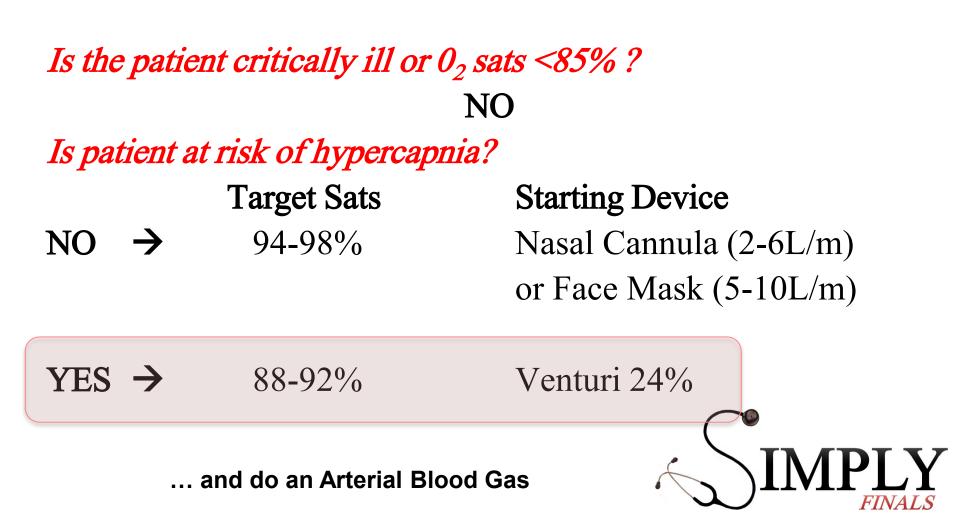
Respiratory Failure

- Type 1 ONE Problem
- Type 2 TWO Problems

 $PaO_2 < 10kPa$

70yo man walks into A&E with breathlessness and productive cough. She has known COPD and has had previous ITU admissions with *"problems with the gases in my blood"*

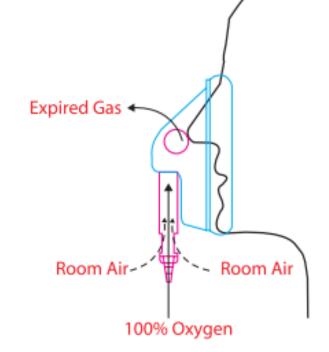
What would be your management?


- ABCDE
- Hx- as above
- Ex- talking to you, no signs of distress, widespread polyphonic wheeze

BP 145/90 HR 105 RR 20 Sats 87%

Oxygen Therapy

70yo COPD. Mild SOB/cough. Wheeze. RR20 HR105 Sats 87% OA



Venturi Masks

Deliver constant/Fixed O₂ of 24-40% Increasing flow does not increase oxygen Concentration

Fixed delivery of Oxygen

Colour Coded Venturi Masks

Colour of Mask attachment	Oxygen (%)	Rate of Oxygen L/Min
Blue	24	2-4
White	28	4-6
Yellow	35	8-10
Red	40	10-12
Green	60	12-15
L		

Prescribe

DRUG OXYGEN (Refer To Trust Oxygen Policy)		
Circle target oxygen saturation 88-92% 94-98% Other	STOP DATE	
Starting device/flow rate 24% Venturi PRN Continuous 2L/min		
	PHARM	
(Saturation is indicated in almost all cases except for palliative terminal care)		
SIGNATURE / PRINT NAME	DATE 11/02/15	

70yo COPD. Mild SOB/cough. Wheeze. RR20 HR105 Sats 87% OA ... Arterial blood gas

pH	7.42
pCO ₂	7.1
pO ₂	14.3
HCO ₃	27

7.21

8.0

30

7.8

*CO*₂*elevated* (>6.0*kPa*) *and acidotic*

Consider NIV ... i.e. Get help!

pН

 pO_2

pCO₂

HCO₃

DO NOT STOP THEIR OXYGEN due to hypercapnia HYPOXIA KILLS! HYPOXIA KILLS!

CO₂ elevated (>6.0kPa) and pH normal Continue with target sats 88-92%

pH	7.38
pCO ₂	5.9
pO ₂	15.1
HCO ₃	24

CO₂ normal and not acidotic Change to target sats 94-98% (*Treat as low risk hypercapnia*)

Normal values (7.35 – 7.45) (4.7 – 6.0 kPa) (>10kPa) (22-26 mmol/1) (+/-2.0 mmol/1)

Repeat ABG in 30-60mins

Alert Card

	OXYG	EN ALERT CARD
Name:		
am at risk of ty	oe II respi	ratory failure with a raised CO ₂ level.
Please use my _	% Ver	nturi mask to achieve an oxygen
saturation of	_% to	% during exacerbations.
Use compressed L/min).	air to dri	ve nebulizers (with nasal oxygen at 2
f compressed ai to 6 minutes.	r not avai	lable, limit oxygen-driven nebulizers

Tracheostomy masks

Case 4

An 18-year-old insulin dependent diabetic is admitted to the emergency department. He has been vomiting for 48h and because he was unable to eat, he has taken no insulin.

Breathing spontaneously RR 35 /min, oxygen 4 l/min via Hudson mask, SpO2 98% P 130 /min, BP 90/65 mmHg, GCS 12 (E3, M5, V4)

What would you expect the ABG to reveal?

ABGs on 151/min are:

pH 7.01 PaC02 2.9KPa Pa02 36.6KPa HC03 7mmol/1 BE -21.9mmol/1 Sats 100%

METABOLIC ACIDOSIS WITH PARTIAL RESPIRATORY COMPENSATION

 NORMAL VALUES

 pH
 7.35 – 7.45

 paO2
 >10 kPa on air

 PaCo2
 4.7-6.0 kPa

 Bicarb
 22 – 26 mmol/1

 BE
 +/- 2 mmol/1

BM 30 mmol/l Urine ketones +++ in the urine DDx / Ix / Mx

Step 3: pH

Normal = 7.35-7.45 Acidaemic pH<7.35 Alkalaemic pH>7.45

рН 🗙 <u>HCO3</u> CO2

Step 4: Respiratory Component Step 5: Metabolic Component

pH $\underbrace{\text{bicarb}}_{\text{CO}_2}$

Take your time

Analyse the pCO₂ and HCO₃ separately related to the pH

pCO₂ opposite way as pH HCO₃ same way as pH (high $CO_2 = Acidosis$) (high $HCO_3 = Alkalosis$)

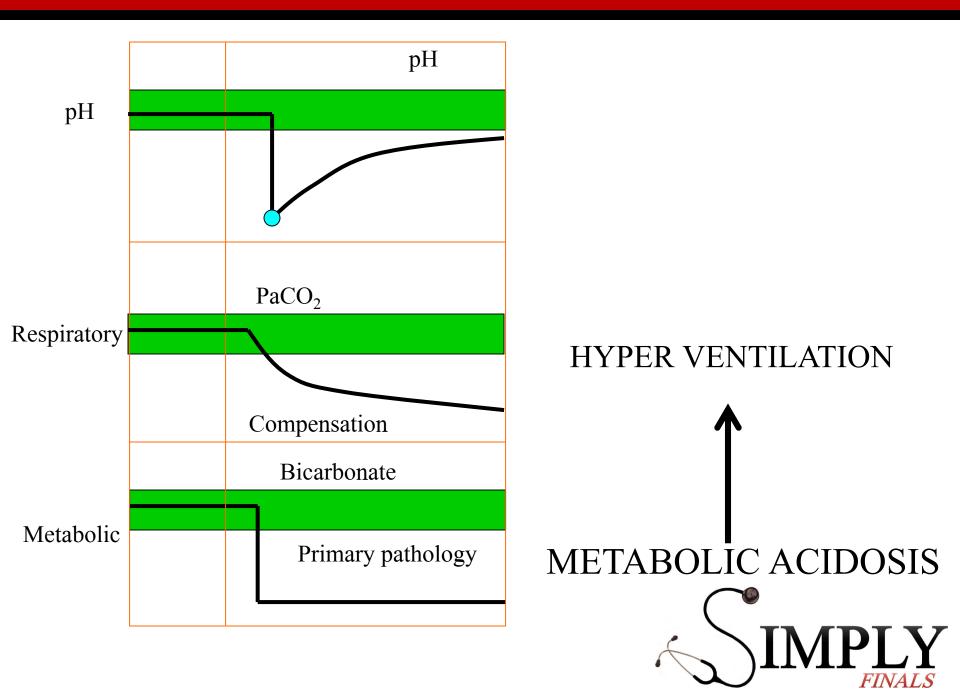
Beware of mixed and compensatory change

Alternative to HCO3- but **SAME** information

• Changes in acute setting

The normal base excess is +/- 2 mmol/l

- Base excess > +2 = metabolic alkalosis
- Base excess < -2 = metabolic acidosis



Response to correct initial problem

Will not "over" compensate

Respiratory = quick Metabolic = slow

Case 4 again

An 18-year-old insulin dependent diabetic is admitted to the emergency department. He has been vomiting for 48h and because he was unable to eat, he has taken no insulin.

Breathing spontaneously RR 35 /min, oxygen 4 l/min via Hudson mask, SpO2 98% P 130 /min, BP 90/65 mmHg, GCS 12 (E3, M5, V4)

ABGs on 151/min are: pH 7.01 PaC02 2.9KPa Pa02 36.6KPa HC03 7mmol/1 BE -21.9mmol/1 Sats 100%

COMPENSATION

METABOLIC ACIDOSIS

WITH PARTIAL RESPIRATORY

BM 30 mmol/l Urine ketones +++ in the urine DDx / Ix / Mx

Case 4 continued

Biochemistry on admission: Na⁺ 136 K⁺ 4.8 Cl⁻ 101 urea 8.1

Reminder of the ABG: pH 7.01 pCO2 2.9 pO2 36.6 HCO3 7 BE -21.9

What's the anion gap?

Does it fit with our diagnosis?

Anion Gap

ONLY DO IN METABOLIC ACIDOSIS

• Calculates level of unmeasured anions

Anion Gap = MEASURED Positive ions – MEASURED Negative ions = $Na^+ - (Cl^- + HCO3^-)$

Normal = 6-12

High anion gap

- Lactic / Keto- / Urate- acidosis

Normal anion gap

- Diarrhoea, Renal tubal acidosis

Case 4 continued

Biochemistry on admission: <u>Na⁺ 136</u> K⁺ 4.8 <u>Cl⁻ 101</u> urea 8.1

Reminder of the ABG: pH 7.01 pCO2 2.9 pO2 36.6 <u>HCO3 7</u> BE -21.9

What's the anion gap? Anion Gap = Na - (Cl + HCO3)Does it fit with our diagnosis?

Anion Gap = Na - (Cl + HCO3)= 136 - (101 + 7)= 28 HIGH ANION GAP

Case 5

A 64yo lifelong smoker is seen in outpatients clinic with a 2 year history of worsening cough and exertional dyspnoea. Walks into clinic room.

7.35 - 7.45 pHABGs on room air show: paO2 >10 kPa on air pH 7.37 *PaCo2* 4.7-6.0 kPa PaC02 6.9KPa Bicarb 22-26 mmol/lPa02 7.1KPa *BE* +/-2 mmol/lHCO3 33mmol/l 1. TYPE 2 RF Base excess + 8.9 mmol/l2. **Respiratory Acidosis** Sats 89% WITH METABOLIC COMPENSATION

(CHRONIC)

Would you expect this patient to have high / low / normal Aa gradient?

A-a Gradient

- Evaluates the CAUSE of hypoxaemia
- Measure of the difference between Alveolar oxygenation and arterial oxygenation
- Normal Aa = extra-pulmonary problem, for example:
 - Hypoventilation (Neuromuscular disorders / CNS disease / sedation)
 - Low inspired FiO2 (high altitude)
- Raised Aa = intra-pulmonary problem, for example:
 - R to L shunt (CCF / ARDS)
 - V/Q mismatch (PE / COPD / pneumonia / pneumothorax / asthma / atelectasis)
 - Alveolar hypoventilation (interstitial lung disease)
- Normal = 5-10
- $\overline{A-a \text{ gradient}} = PaO2 FiO2 \times (760-47) (PaCO2/0.8)$

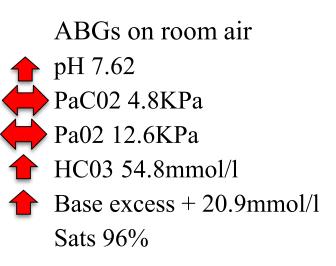
Case 6

A 78yo man attends A&E with a 3 month history of weight loss and a sensation of 'early fullness' on eating. This is now associated with a four day history of worsening 'projectile' vomiting.

ABGs on room air

pH 7.62
PaC02 4.8KPa
Pa02 12.6KPa
HC03 54.8mmol/1
Base excess + 20.9mmol/1 Sats 96% NORMAL VALUES

pH7.35 - 7.45paO2>10 kPa on airPaCo24.7-6.0 kPaBicarb22 - 26 mmol/1BE+/- 2 mmol/1


METABOLIC ALKALOSIS *WHAT COULD THE CAUSE BE?*

DDx / Ix / Mx

Case 6 (alternative)

A 3 week old baby is brought to A&E with projectile vomiting and poor weight gain.

NORMAL VALUES pH 7.35 – 7.45 paO2 >10 kPa on air PaCo2 4.7-6.0 kPa Bicarb 22 – 26 mmol/1 BE +/- 2 mmol/1

METABOLIC ALKALOSIS

DDx / Ix / Mx

Case 7

рН	7.21
pCO2	7.3 kPa
pO2	5.9 kPa
HCO3	14.6 mmol/L
BE	-7.9 mmol/L
Sats	76%

 NORMAL VALUES

 pH
 7.35 – 7.45

 paO2
 >10 kPa on air

 PaCo2
 4.7-6.0 kPa

 Bicarb
 22 – 26 mmol/1

 BE
 +/- 2 mmol/1

Type 2 Respiratory Failure MIXED ACIDOSIS Both Respiratory and Metabolic component

Cause?

Respiratory

Acidosis (PaCO2>6.0kPa)

Hypoventilation T2 RF-Impaired gas exchange

- COPD
- Heroin OD
- Chest wall defect
- Resp. muscle weakness e.g. G.Barre

Alkalosis (PaCO2<4.7kPa)

Hyperventilation due to

- Anxiety
- Hypoxemia
- Metabolic acidosis
- Neurologic Lesions
- Trauma
- Infection

Metabolic

Acidosis (HCO3 <22mmoll/l)

- DM Ketoacidosis
- Urate acidosis (Renal failure)
- Lactic Acidosis
 Decreased perfusion
 Severe hypoxemia/sepsis
- Drugs (e.g. Salicylates)

*Anion gap

Alkalosis (HCO3 >26mmoll/l)

- XS loss (e.g. Vomiting)
- Ingestion of alkali

Case 8: CPAP or BiPAP?

You are FY1 on August 5th 2015

Nurse calls...

"68yo COPD patient becoming unwell and now very short of breath. What would you like to do doctor, CPAP or BiPAP?"

What would you do??

Case 8: Management

- ABCDE
- Give high flow O2
- See the notes / involve the patient
- Hx / Ex / Ix
- Basic investigations ? CXR, ABGs, ECG, Bloods
- Institute initial management
- Get Help!

Non-Invasive Ventilation

Avoids intubation. Can easily apply/remove.

Indications

- Acute Type 1 or Type 2 RF
- Chronic T2 RF/ Sleep Apnoea
- Uncontrolled acidosis or hypercapnia

Contraindications

- Patient declines- is v.uncomfortable
- Patient very confused
- High Aspiration Risk
- Facial Trauma

Should show ABG or clinical improvement within 2 hours

Non-Invasive Positive Pressure Ventilation

CPAP

Continuous Positive Airway pressure ventilation

BiPAP

Bilevel Positive Airway Pressure ventilation device

Both deliver oxygen above estimated Peak End Expiratory Pressure (PEEP)

NIV

<u>CPAP</u>

Oxygenation Type 1 RF e.g. LVF/CCF Chest wall trauma

<u>BiPAP</u>

Ventilation Type 2 RF e.g. COPD with Acidosis Decompensated OSA

Continuous pressures "Breathing into wind tunnel" IPAP/EPAP pressures "Senses inspiration" Pushes O₂ in and CO₂ out

Cases 9 & 10

9. A 23yo Asthmatic with an acute asthma attack who has O₂ sats of 93% on room air. ABG: pH 7.40, pO2 8.8, pCO2 8.0, HCO3 25 *What is your management?*

10. A previously fit and well 61yo man who is immediately post hemi-colectomy, no specific complaints. Sats 98%, HR 90, BP 120/80, RR 14
Would you continue oxygen?
Other considerations?

9. A 23yo Asthmatic with an acute asthma attack who has O₂ sats of 93% on room air. ABG=Type 2 Respiratory Failure What is your management?

SENIOR HELP/ITU. High flow oxygen- 15L/min NRM. Monitor all vital signs. Examine patient for possible reversible causes

10. A previously fit and well 61yo man who is immediately post hemi-colectomy, no specific complaints.

Sats 98%, HR 90, BP 120/80, RR 14

Would you continue oxygen??Nasal Specs, 2-4L/minOther considerations?

Fluid balance, NBM/IV Fluids; regular obs. Analgesia/Anti-emetics.

5 step approach

- Step 1 HOW IS THE PATIENT?
- Step 2 Assess Oxygenation
- Step 3 pH- acidosis vs alkalosis
- Step 4 Respiratory component
- Step 5 Metabolic component

Summary

- Make sure you look at the clinical scenario
- Be systematic and always use the a standardised approach, so don't miss whole picture
- Hypoxia kills

