DIABETES AND ENDOCRINOLOGY

Dr Cathy Gouveia

CTF and Diabetes & Endocrinology SpR

Barts Health

WHAT DO YOU NEED TO KNOW ABOUT DIABETES FOR FINALS?

- Classification of diabetes
- Management of diabetes
- Complications of diabetes
- Diabetes emergencies

WHAT DO YOU NEED TO KNOW ABOUT DIABETES FOR FINALS?

- Classification of diabetes
- Management of diabetes
- Complications of diabetes
- Diabetes emergencies

CLASSIFICATION

- Type 1 Diabetes; "absolute insulin deficiency"
- Type 2 Diabetes; "insulin resistance => deficiency"

INSULIN RESISTANCE TIME

CLASSIFICATION

- Type 1 Diabetes; "absolute insulin deficiency"
- Type 2 Diabetes; "insulin resistance => deficiency"
- Other
 - Pancreatic disease
 - Pancreatitis / pancreatectomy
 - Genetic disease
 - Cystic Fibrosis / Haemochromatosis
 - Gestational Diabetes

WHAT DO YOU NEED TO KNOW ABOUT DIABETES FOR FINALS?

- Classification of diabetes
- Management of diabetes
- Complications of diabetes
- Diabetes emergencies

MANAGEMENT OF TIDM

■ 55

MANAGEMENT OF TIDM

Insulin!

INSULIN - PROFILES OF ACTION

Aspart, lispro, glulisine

MANAGEMENT OF T2DM

- Diet and exercise
- Insulin sensitiser
- Insulin secretagogue
- Reduce food absorption
- Increase glucose loss
- Insulin

WHAT DO YOU NEED TO KNOW ABOUT DIABETES FOR FINALS?

- Classification of diabetes
- Management of diabetes
- Complications of diabetes
- Diabetes emergencies

LONG TERM COMPLICATIONS OF DIABETES

- Microvascular
 - Retinopathy
 - Nephropathy
 - Neuropathy (autonomic vs. peripheral)
- Macrovascular
 - Atheromatous disease

MANAGEMENT OF COMPLICATIONS

♣ 5.5

- 23 yr old man
- A&E -> Medics
- PC: weight loss, polyuria, polydipsia, vomiting and abdominal pain
- GP Ix:
 - dipstick urine: Glu 3+, Ketones 3+
 - BM: "Hi"
- What's your differential dx?

• How would you manage this patient??

• What further investigations would you do??

Systems review: unremarkable

PMHx: Nil

FHx: Mother- DM. Dx age 62 "on tablets"

DrugHx: Nil. NKDA.

 Social Hx: Chef in restaurant. Lives with family. Non-smoker. ETOH: nil. Denied illicit drug use

Examination:

General:

Unwell. Alert + orientated.

Loose clothing++

Dry mucous membranes++

T 37.0 HR 120 BP 100/58 RR 26

- *Cardio*: normal HS
- Resp: chest- vesicular BS
- Abdo: mild central abdo tenderness, no guarding/rebound
- <u>PNS + CNS</u>: unremarkable. Fundoscopy: normal
- *Feet*: no neurovascular compromise

■ *Bloods*:

Gluc 32

Na **125** Hb 16 *VBG*:

MCV 90 K 4.0 pH **7.20**

pCO2 2.4 WCC 16 **Creat 120**

pO2 6.5 **Urea 14** Plts 349

HCO3 13

B.E - 8

Lact **2.0**

• How would you treat this patient?

- IV fluid resuscitation
- Fixed Rate Insulin Infusion;
 - 0.1 units/kg/hour
 - Maintain CBG > 14 with concurrent 10% dextrose until ketoacidosis resolves
- Monitor CBGs, VBGs, ketosis
- Inform HDU
- Diabetes Team review

- Insulin infusion discontinued-TDS novorapid + Glargine
- Diabetic Nurse education
- Dietician review

WHAT DO YOU NEED TO KNOW ABOUT DIABETES FOR FINALS?

- Classification of diabetes
- Management of diabetes
- Complications of diabetes
- Diabetes emergencies

DIABETIC EMERGENCIES

- Diabetic Ketoacidosis
- Hyperosmolar Hyperglycaemia Syndrome
- Hypoglycaemia

HHS

Diagnostic criteria?

HHS

- Diagnostic criteria?
 - Hyperglycaemia (CBG >30mmol/l)
 - Hyperosmolar (serum osmo > 340)
 - Ketones <+2</p>
- Management?

HHS

- Diagnostic criteria?
 - Hyperglycaemia (CBG >30mmol/l)
 - Hyperosmolar (serum osmo > 340)
 - Ketones <+2
- Management?
 - Average fluid deficit 10-20L for 100kg man
 - Aim for slow, consistent fall in osmolality
 - ??Insulin

HYPOGLYCAEMIA

- CBG <4
- Conscious
 - What's the treatment?

HYPOGLYCAEMIA

- CBG <4
- Conscious
 - What's the treatment?
- Unconscious
 - What's the treatment?

BREAK TIME

STAND UP

JUMP UP AND DOWN

BREAK TIME

- STAND UP
- JUMP UP AND DOWN
-OK, LET'S FINISH THIS TALK!

WHAT DO YOU NEED TO KNOW ABOUT ENDOCRINOLOGY FOR FINALS?

- Endocrine emergencies
- Pituitary disorders
- Thyroid disorders
- Parathyroid disorders
- Adrenal disorders

WHAT DO YOU NEED TO KNOW ABOUT ENDOCRINOLOGY FOR FINALS?

- Endocrine emergencies
- Pituitary disorders
- Thyroid disorders
- Parathyroid disorders
- Adrenal disorders

- 74 year old lady
- PC: confusion, reduced consciousness
- HPC: found by carer at home -> LAS.
- Increasing lethargy for past 2 months. "sleeping all the time".
 Reduced eating, drinking. "Puffy face"

- Observations;
 - Temperature 35.5
 - HR.....
 - BP 86/50
 - RR 10
 - Sats 98% RA

- What's the differential diagnosis?
- How would you manage this patient?
- How would you treat this patient?

MYXEDEMA COMA

- End stage of untreated or insufficiently treated hypothyroidism
- Typical clinical picture:
 - Elderly obese female
 - Becoming increasingly withdrawn, lethargic, sleepy and confused
 - coma
- History:
 - Previous thyroid surgery
 - Radioiodine
 - Default thyroid hormone therapy
- MORTALITY IS 20%

PHYSICAL FINDINGS

- Comatose or semi comatose
- Dry coarse skin
- Hoarse voice
- Thin dry hair
- Delayed reflex relaxation time
- Hypothermia
- Pericardial, pleural effusions, ascites

PATHOGENESIS OF MYXEDEMA

LAB TESTS

- Free T4 low and TSH high
- If the T4 is low and TSH low normal consider ??
- Distinguish from sick euthyroid syndrome
 - Low T3, Normal or low TSH, normal free T4

MANAGEMENT OF MYXEDEMA (1)

- ICU admission may be required for ventilatory support and IV medications
- Parenteral thyroxine
 - Loading dose of 300 400 μg
 - Then 50 μg daily

MANAGEMENT OF MYXEDEMA (2)

- Electrolytes
 - Water restriction for hyponatremia
 - Avoid fluid overload
- Avoid sedation
- Glucocorticoids
 - Controversial but necessary in hypopituitarism or multiple endocrine failure
 - Dose: Hydrocortisone 40 100 mg 6 hly for 1 week, then taper

- 44 yr old
- PC: ?Psychotic symptoms -> referred to Psych
 They requesting a "Medical opinion"
- HPC: Weight loss, worsening "manic type symptoms", poor concentration

- Observations;
 - Temp 39.0
 - HR 140
 - BP 155/87
 - RR 30
 - Sats 98% RA

- What's the differential diagnosis?
- How would you manage this patient?
- How would you treat this patient?

Acute life threatening exacerbation of thyrotoxicosis

CLINICAL SETTING

- Patient with Graves disease who has discontinued antithyroid medication OR previously undiagnosed
- Hyperpyrexia (>40 °C)
- Sweating
- Tachycardia with or without AF
- Nausea, vomiting and diarrhea
- Tremulousness and delirium, occasionally apathetic

PRECIPITATING FACTORS

- Withdraw of antithyroid drugs
- Severe infection
- DKA
- CVI
- Cardiac failure
- Surgery
- Trauma

- Radioiodine
- Drug reaction
- Iodinated contrast medium

DIAGNOSIS

- Free T4, free T3 elevated
- TSH suppressed
- In Graves' Thyroid Perioxidase Antibodies strongly positive
- US thyroid
- NM Thyroid (once stable)

TREATMENT OF THYROID STORM

MANAGEMENT OF THYROID STORM (1)

- Supportive care
 - Fluids, containing Glucose
 - Oxygen
 - Cooling
 - If indicated antibiotics or digoxin

MANAGEMENT OF THYROID STORM (2)

- Specific Measures
 - Propranolol PO or iv infusion
 - Propylthiouracil (NG/PO or PR)
 - Lugol's Iodine or Potassium Iodide PO
 - Hydrocortisone 6 hly

PROGNOSIS

- Mortality dropped since the 1920's from 100% to 20 30%
- Mortality most frequently associated with serious underlying medical conditions

CAUSES OF THYROTOXICOSIS

■ 55

- 25 yr old
- PC: Collapse.
- HPC: Recent dx UTI -> PO Abx by GP
 Vomiting, abdo pain
 Lethargy
 Weight loss 5 kg in 1/12

- Observations;
 - Temp 37.9
 - HR 110
 - BP 80/45
 - RR 28
 - Sats 98% RA
 - **BM 2.8**

- What's the differential diagnosis?
- How would you manage this patient?
- How would you treat this patient?

CAUSES OF ACUTE ADRENAL INSUFFICIENCY (1)

- Usually presents as an acute process in a patient with underlying chronic adrenal insufficiency
- Causes of Primary adrenal insufficiency
 - Auto-immune
 - TB
 - Metastatic malignancy to adrenals
 - HIV related infections

CAUSES OF ACUTE ADRENAL INSUFFICIENCY (2)

- Causes of secondary adrenal insufficiency
 - Pituitary or hypothalamic disease
- Acute destruction of the adrenals can occur with bleeding in the adrenals
 - Sepsis
 - DIC or
 - complication of anticoagulant therapy

PRECIPITATING EVENTS (1)

- Omission of medication
- Precipitating illness
 - Severe infection
 - Myocardial infarction
 - CVI
 - Surgery without adrenal support
 - Severe trauma
- Withdrawal of steroid therapy in a patient on long term steroid therapy (adrenal atrophy) *Iatrogenic Adrenal Insufficiency*

PRECIPITATING EVENTS (2)

- Administration of drugs impairing adrenal hormone synthesis e.g. Ketoconazole
- Using drugs that increase steroid metabolism e.g. Phenytoin and rifampicin

CLINICAL PRESENTATION

- Nausea and vomiting
- Hyperpyrexia
- Abdominal pain
- Dehydration
- Hypotension and shock

CLUES TO UNDERLYING PRIMARY ADRENAL INSUFFICIENCY

- Pigmentation in unexposed areas of the skin
 - Creases of hands
 - Buccal mucosa
 - Scars
- Consider adrenal insufficiency if hypotension does not respond to pressors

LAB DIAGNOSIS (1)

- Hyponatremia and hyperkalemia (Hyponatremia might be obscured by dehydration)
- Random cortisol is not helpful unless it is very low (<5 mg/L) during a period of great stress
- 9am cortisol
- What are normal cortisol dynamics??

LAB DIAGNOSIS (2)

- ACTH (synacthen) stimulation test
 - Failure of cortisol to rise above 580 nmol/L 30 min after administration of 0.25 mg of synthetic ACTH sc
- Basal ACTH will be raised in primary adrenal insufficiency but not in secondary
- CT of abdomen will reveal enlargement of adrenals in patents with adrenal hemorrhage, active TB or metastatic malignancy

MANAGEMENT OF ACUTE ADRENAL INSUFFICIENCY (1)

- Hydrocortisone
 - 100 mg IM stat then 50-100 mg 4 hly for 24 h
 - Taper slowly over the next 72 h
 - change to oral replacement therapy once E&D
 - Overlap the first oral and last IM doses
- Replace salt and fluid losses IV fluids

MANAGEMENT OF ACUTE ADRENAL INSUFFICIENCY (2)

 Patients with primary adrenal insufficiency may require mineralocorticoid therapy (fludrocortisone) when shifted to oral therapy

Monitor postural hypotension, electrolytes

PITUITARY DISORDERS

- Pituitary tumours
 - Local Compression
 - Failure of normal pituitary function
 - Bitemporal hemianopia
 - III, IV and VI palsy
 - Loss of dopaminergic control and hyperprolactinaemia
 - Uncontrolled hormone release
 - ACTH Cushing's Disease
 - GH Acromegaly
 - LH / FSH typically NFPA
 - Prolactin
 - TSH (rare)

PITUITARY APOPLEXY

CLINICAL SETTING

- Sudden crisis in a patient with known or previously unknown pituitary tumor
- It may occur in a normal gland during and after child birth, or with head trauma, or in patient on anticoagulation therapy

SYMPTOMS AND SIGNS

- Severe headache and visual disturbance
- Bitemporal hemianopia
- N III palsy
- Meningeal symptoms with neck stiffness
- Symptoms of acute secondary adrenal insufficiency
 - Nausea vomiting, hypotension and collapse

DIAGNOSIS

- CT scan of head and pituitary
- Hormonal studies only of academic interest
- Assessment of pituitary function after acute stage has settled

MANAGEMENT OF PITUITARY APOPLEXIA

- Hormonal
 - Hydrocortisone (glucocorticoid support and relief of ?cerebral edema)
- ?Neurosurgical intervention
 - Transsphenoidal pituitary decompression

After the acute episode the patient must be evaluated for multiple pituitary deficiencies

PHEOCHROMOCYTOMA CRISIS

CAUSES

- Action of unopposed high circulating levels of catecholamines
 - α receptors: Pressor response
 - ullet eta receptors: positive ino- and chronotopic
- Precipitating factors
 - Spontaneous
 - Haemorrhage into pheochromocytoma
 - Exercise
 - Pressure on abdomen
 - Urination
 - Drugs: glucagon, naloxone, metoclopramide, ACTH, cytotoxics, TAD

CLINICAL FEATURES

 History of poorly controlled Hypertension or accelerated Hypertension

• Hypertension, palpitations, sweating, pallor, pounding headache, anxiety, tremulousness, pulmonary edema, feeling of impending death, hyperhydrosis, nausea and vomiting, abdominal pain, paralytic ileus hyperglycaemia, hypertensive encephalopathy, myocardial infarction and stroke

CLINICAL FETAURES

- Attacks build up over a few minutes and fade gradually over 15 min or can be more sustained (60 min)
- Signs of end organ damage

Hypertensive Retinopathy - Grade 4

BIOCHEMICAL DIAGNOSIS

 24h urine collection for free catecholamines and metanephrines

TREATMENT

- Do not wait for biochemical confirmation of the diagnosis
- α antagonists: Phenoxybenzamine, Doxazosin
- Non selective β- antagonist: Propranolol
- Treatment with α antagonists should precede β antagonist treatment with 48 h to avoid exacerbation of the crisis
- Be aware of postural hypotension

ACUTE HYPERCALCAEMIA

MOST COMMON CAUSES

- Endocrine:
 - Hyperparathyroidism
 - MEN
 - PTHrp by solid tumors
- Neoplastic:
 - Ca with bone metastases
 - Myeloma
- Granulomatous:
 - Sarcoidosis
 - Tuberculosis

What's the commonest cause??

CLINICAL FEATURES

- History of polyuria and polydipsia
- Dehydration
- Bone pain
- Confusion
- Anorexia
- Constipation
- "BONES, STONES, GROANS AND ABDOMINAL MOANS"

ECG HYPERCALCEMIA

WORKUP

S - Ca > 3.0 is 90% of the time of malignant origin

TREATMENT OF HYPERCALCAEMIA

- Volume repletion and diureses
 - NaCl 0.9% 4 L in first 24 h
 - Loop diuretics (furosemide has calciuretic effects)
- Bisphosphonates IV (Pamidronate)
- Corticosteroids (prednisone 30 60 mg daily) are the drugs of choice if granulomatous disease or vit A or D intoxication is the cause

ACUTE HYPOCALCAEMIA

CAUSES OF ACUTE HYPOCALCAEMIA (1)

- Hypoparathyroidism
 - Destruction of parathyroids
 - Most commonly surgical parathyroid resection or accidental
 - Acute hypomagnesaemia
- Reduced 1,25(OH)vit D
 - Chronic renal insufficiency
 - Acute systemic illness
 - Drugs: ketoconazole, doxorubicin, cytarabine

CAUSES OF ACUTE HYPOCALCAEMIA (2)

- Increased uptake of Ca in bone
 - Osteoblastic metastases
 - Hungry bone syndrome
- Complexing of Ca from the circulation
 - \uparrow albumin binding in alkalosis
 - Acute pancreatitis with formation of Ca soaps
 - Transfusion related citrate complexing

CLINICAL PICTURE OF ACUTE HYPOCALCAEMIA

- Symptoms
 - Perioral numbness
 - Tingling parasthesias
 - Muscle cramps
 - Carpopedal spasm
 - Seisures

- Signs
 - Hyperreflexia
 - Chvostek sign
 - Trousseau sign
 - Hypotension
 - Bradicardia
 - Prolonged QT interval
 - Arrhythmias

CHVOSTEK SIGN

TROUSSEAU SIGN

ECG IN HYPER AND HYPOCALCEMIA!

BIOCHEMICAL WORKUP

- total Ca⁺⁺, Albumin and Ionized Ca⁺⁺
- PO₄++
- Mg⁺⁺
- Plasma PTH
 - Low in hypoparathyroidism
 - High in hungry bones syndrome /tertiary hyperparathyroidism
- $-25(OH)D_3$ and 1,25 (OH)D₃

TREATMENT OF HYPOCALCEMIA

- First correct low Mg⁺⁺
- Calcium gluconate 10 ml of 10% solution IV over 5 10 min and repeat as necessary in cases with frank generalized tetany
- Slower continuous infusion of Calcium gluconate in less acute cases

SUMMARY

- Acute/chronic failure or hyperfunctioning of an endocrine gland can occasionally result in catastrophic illness or death
- It is important to recognizes these abnormalities and manage them appropriately

