## SIMPLY... ECGs

Dr William Dooley



## Content

- Basic ECG interpretation pattern
- Some common (examined) abnormalities
- Presenting ECGs in context





# Setting up an ECG



Photograph of a Complete Electrocardiograph, Showing the Manner in which the Electrodes are Attached to the Patient, In this Case the Hands and One Foot Being Immersed in Jars of Salt Solution



# Setting up an ECG



- 1 V1- 4<sup>th</sup> Right intercostal space at sternal border
- **2 V2** 4<sup>th</sup> Left intercostal space at sternal border
- **3 V4** 5<sup>th</sup> Left intercostal space in mid-clavicular line
- 4 V3- Halfway between V2 and V4
- **5 V6** Mid-axillary line at same horizontal plane as V4
- **6 V5** Placed between V4 and V6



# Basic Interpretation and Presentation

- 1. What/When: "Electrocardiogram" on Date and Time
- 2. Who/Why: Patient name with Age / Presenting Complaint
- 3. +/- Main abnormality
- 4. Structured approach:
- Rate
- Rhythm
- Axis
- P Waves/PR Interval
- **5. Summary**, then...

Investigation Management

- QRS Complex
- ST segment
- T Waves/QT Interval



#### Rate

#### 300 / R to R Interval (Big squares)



$$1 = 300$$
  
 $2 = 150$   
 $3 = 100$   
 $4 = 75$   
 $5 = 60$ 

6 = 50

Normal rate is 60-99 bpm

•Bradycardia: Rate is <60

•Tachycardia: Rate is >99 bpm

What is the rate?

80bpm





Regular/Irreguar? What is the rate?



Count up all the QRS complexes x 6 (on standard ECG Paper)

A standard ECG strip records 10 seconds So this will give the rate over 1 minute





Count QRS = 
$$25$$
  
24 x 6 =  $144$  bpm











Regular/Irregular? What is the rhythm?

# Step 2: Rhythm

Normal Sinus Rhythm



P wave is followed by QRS P-R interval is 120-200ms P-R interval is constant Rate between 60-99bpm

P wave is followed by QRS P-R interval is 120-200ms P-R interval is constant Rate 100bpm or more



Sinus tachycardia

**Atrial Fibrillation** 



No P waves Irregularly irregular Variable R-R intervals



Narrow complex tachy Regular P waves (300bpm) Flutter waves (most in II/III/aVF) **Atrial Flutter** 

Regular/Irregular? What is the rhythm?

## Step 3: Axis

## Leads I and aVF



# Step 4: P Waves and PR Interval

#### P wave: Atrial Depolarization.

• <3 small squares in duration (120 ms)

PR Interval = Start of P to start of QRS

• <5 squares (200 ms)





#### What degree of heart block are these?



2nd Degree (Mobitz Type 1) AKA: Wenckebach



1st Degree



3rd Degree / complete



## Heart Block



#### 1st Degree

• PR Interval fixed and >5 small squares (200ms)

#### 2nd Degree (Mobitz Type 1) aka: Wenckebach

- Progressive lengthening of PR interval
- Then dropped QRS complex
- Cycle starts again





## Heart Block

#### 2nd Degree (Mobitz 2)

- PR Interval is constant
- QRS complex dropped



Need longer rhythm strip to see if there is a fixed order block e.g. 3:1 block



## Heart Block

#### 3rd Degree Block (or complete heart block)

- No relation between P waves and QRS complexes
- QRS rate usually less than P rate





# Step 5: QRS Complex

#### Ventricular Depolarization

• <3 small squares (120ms)







#### Which type of bundle branch block are these?













## RBBB....

Broad QRS Complex V1/V2 → V5/V6 Normal axis deviation

## **M**arro W





## LBBB...

Broad QRS Complex V1/V2 → V5/V6

WilLiaM

Normally Left axis deviation





Nb. Not possible to interpret ST segment in LBBB





#### Bifasicular block

- 1. Right bundle branch block, and:
- either left anterior fasciular block
   → Left axis deviation
   or left posterior fasciular block
  - → Right axis deviation

#### Trifasicular block

- 1. Bifasicular block, and
- Heart block (most commonly 1<sup>st</sup> degree)





# Step 6: ST Segments

From end of QRS to end of T Wave

• Normally isoelectric







75 yo. SOB/central chest pain worse on exertion.

PMH- HTN/CCF

DH- Frusemide/amlodipine

SH- Smoker

What is the main abnormality? How would you present this case?

History
Examination
Investigation
Management

## 12 lead ECG

Panoramic view of heart from 12 angles

Limb/augmented leads → frontal plane





6 chest leads → horizontal plane







| 1  | AVR | V1 | V4 |
|----|-----|----|----|
| II | AVL | V2 | V5 |
| Ш  | AVF | V3 | V6 |

Anterior: V3, V4

Septal: V1, V2

Inferior: II, III, AVF

Lateral: I, AVL, V5, V6



## Cardiac Territories



Inferior Right Coronary Artery

Lateral Left Circumflex Artery

Anterior Left Anterior Descending Artery

Posterior (ST Depression) RCA/LCX





What territory?

Inferior / posterior

What vessel?

Right Coronary Artery
Left Circumflex Artery

Inferior Posterior

**RCA** 

Posterior RCA/LCX



# Evolving MI and Hallmarks of AMI







## T Waves

#### Ventricular Repolarization

• Normal = same direction as QRS complex









Tall tented narrow T waves Hyperkalaemia



Wide based, asymmetrical T waves Hyperacute ischaemia





39yo female. SOB. PMH- Nil DHx- COCP

What are the abnormalities on this ECG? What is the diagnosis? How would you present it?

#### ECG changes in pulmonary embolism

"Classical" S1Q3T3
Occurs in only 20% of PE.

#### **S1**

Deep S wave in lead 1





More common is sinus tachycardia, RBBB or RAD



21yo Somalian male. Syncopal episode.Now asymptomaticPMH- Nil. Has had similar episodes previously





Coved ST segment elevation >2mm in >1 of V1-V3 followed by a inverted T wave

#### Signs and symptoms include:

- Blackout
- Seizures
- Cardiac arrest





55 year old alcoholic Presented unwell with dizziness and fainting.



## QT Interval



- QT Interval: Start of QRS to end of T wave
- QTC = QT/ $\sqrt{(R-R)}$









**Asystole** 



### Basic ECG Interpretation

- Rate
- Rhythm
- Axis
- P Waves/PR Interval

- QRS Complex
- ST segment
- T Waves/QT Interval
- Summary





✓ Basic ECG interpretation pattern

✓ Some common (examined) abnormalities

✓ Presenting ECGs in context

Any Questions?





78yo in ED. Collapsed PMH- CCF DH ??

Rhythm Regular
Axis RAD
PR- 2:1 p waves : QRS
QRS – RBBB
Mobitz type 2 AV block

History
Examination
Investigation
Management



18yo male. BIBA. GCS 3. Seizures PMH/DH- Nil

Rate- 150
Rhythm- Regular
Axis- RAD
RBBB
Long QTc
Dx- TCA Overdose

History
Examination
Investigation
Management

# 'High Take Off'

Normal variant... in correct context





### R wave progression





## **Ectopics**

- Supraventricular
  - Narrow Complex
  - Abnormal P Wave
  - Normally get compensatory pause



- Abnormal Broad Complex
- Then goes back to normal beat





## Atrial Tachycardias

- Appearance
  - Narrow Complex
  - Abnormal P wave morphology

Supraventricular = Narrow Complex
Sinus Tachycardia
Atrial Tachycardia
Atrial Flutter
Atrial Fibrillation
Junctional Tachycardias inc. Wolff Parkinson White

Ventricular = Broad Complex Ventricular Tachycardia Ventricular Fibrillation



#### Atrial Flutter

- Atria contractions of 300bpm
- Saw-tooth flutter waves
- Normally also see AV block







#### Atrial Fibrillation

- Uncoordinated atrial depolarization
- No P waves + Irregular baseline







#### Ventricular Tachycardia

- Aberrant focus of excitation in ventricles
- Wide QRS Complex
- Monomorphic or polymorphic









#### Ventricular Tachy

- Capture Beats
  - Atrial depolarization 'capture'



- Mix of A & V beats
- Looks halfway between normal and VT



- Type of polymorphic VT
- Fluctuates









#### Junctional Tachycardias

- AVN Re-entry Tachycardia
- 2 pathways through AVN & common final pathway
  - One fast long refractory period
  - One slow- short refractory period
- Atrial beat...
  - Down slow as fast refractory
  - Back up fast pathway
  - Circuit gets set-up
- Narrow QRS/Regular/No P Waves







#### Atrioventricular Re-entry Tachycardia: WPW

- Aberrant connection between Atria and Ventricle with non-specialist conduction tissue
- Rapid conduction into ventricles
  - Short PR / Long upstroke to QRS: <u>Delta Wave</u>
- Extra circuit -> re-entry tachycardia
- 2 types
  - 1: Dominant R in V1
  - 2: No dominant R in V1



### Sick Sinus Syndrome

- Get Brady, Tachy and Tachy-bradycardias
  - Age
  - Idiopathic fibrosis
  - Ischaemia, including myocardial infarction
  - High vagal tone
  - Myocarditis
  - Digoxin toxicity



- ECG RBBB R wave progression rather than Marrow
- Do W and M then give a lots R postive
- L ventr hyp

