SIMPLY.... Fluids

Dr Will Dooley

- Maintenance vs Resuscitation
- Prescribing
- Common Errors $:$
- Calculations -
- Drip rates

Case

54 yo presents with severe diarrhoea and vomiting.

- How would you proceed?

Assessment

- History
- Examination
- Investigation
- Management

Assessment

History

Case

54 yo presents with severe diarrhoea and vomiting.

HPC

Vomiting for 3 days, 2 days of diarrhoea Unable to tolerate oral fluids for 24 hrs Ate dodgy kebab on Saturday. No recent travel.
Feeling unwell, thirsty, light-headed when standing Passing less urine than normal No feverish symptoms

HISTORY
Input vs Output
?Limited intake
?High Losses

Symptoms

Urine

Co-morbidities

Normally fit and well

Assessment

Examination

Case

54 yo presents with severe diarrhoea and vomiting.

Examination
Alert
Accessory muscles of respiration
Cool peripheries
Dry mucus membranes

Observations:
See chart

EXAMINATION
A

B Respiratory Rate $>20 / \mathrm{min}$
C Systolic Blood Pressure $<100 \mathrm{mmHg}$ Heart Rate >90 bpm Cold peripherally JVP

D Urine output $<0.5 \mathrm{ml} / \mathrm{kg} / \mathrm{hr}$ Temperature AVPU

E Dry mucosae

Assessment

Investigation

Weight: 100kg

Bedside:	$\frac{\text { INVESTIGATIONS }}{\text { Weight }}$
	Fluid Balance Chart Urine dipstick
Bloods:	Electrolytes
Imaging:Chest X-Ray	

Urine : 4+ ketones, nil else
What should his Urine Output be over 4 hours?

Bloods:
U\&E
FBC

Management

- IV Access:
- What size cannula?
- Fluid Challenge:
- What type of fluid?
- How much fluid ?

Type of fluid and rate

- Crystalloids

Clear fluids- water+electrolytes

- 0.9\% Normal Saline
- Dextrose
- Hartmann's

	0.9% Normal saline	Hartmann / Plasmalyte	5% glucose
Na	154 mmol	131 mmol	0
K	0	5 mmol	0
Cl	154 mmol	111 mmol	0
Osmol	$303 \mathrm{mosm} / 1$	$279 \mathrm{mosm} / \mathrm{l}$	253 mosm/l
Other	nil	Lactate 29 Calcium 2	Glucose $50 \mathrm{~g} / \mathrm{l}$

- Colloids

Gelatinous- particles suspended in solution

- Volplex
- Gelofusion
- Blood

Fluid compartments

Total body water volume =
40 L, 60\% body weight

How much fluid?

Resuscitation

Assess- $A B C D E$

IF NO OVERLOAD SIGNS...

> * FLUID CHALLENGE *

250-500mls Crystalloid

Re-assess

Further 250-500mls bolus until 2L given
RE-ASSESS

Fluid prescription

When prescribing blood check if the patient requires
irradiated or CMV negative components
Do not make any additions to blood components

Infusions and blood and blood components											
Date	Fluid or blood / blood component	Medicine added and dose	Final vol (mls or mm if a syringe)	Route	Rate ($\mathrm{ml} / \mathrm{hr}$) or ($\mathrm{mm} / \mathrm{hr}$) or duration (hrs/mins)	Surname/ Signature/Bleep	Batch or blood component unit number	Nurse's signatures	Infusion Start time Finish time	Vol. given	Pharmacy

The patient was placed on a fluid balance chart.

Average intake per day

Average output per day

Case 2...

-35yo

- Post emergency caesarean section (for sepsis and fetal distress)
- Blood loss 1300mls
- Obs

T37.0 BP 95/60 HR 110 RR 24 98\% OA

- Fluid challenge...

Resuscitation

Assess- $A B C D E$

IF NO OVERLOAD SIGNS...

\author{

* Fluid Challenge *
}

250-500mls Crystalloid

Reassess
Further 250-500mls bolus until 2L given

REASSESS

- If improves... likely hypovolaemia
- If does not improve... Likely something else

Maintenance Requirements

Fluid: $\quad 25-30 \mathrm{ml} / \mathrm{kg} /$ day
Sodium: $\quad 1-2 \mathrm{mmol} / \mathrm{kg} /$ day
$\mathrm{K}^{+:}$
$0.5-1 \mathrm{mmol} / \mathrm{kg} /$ day
(approx. max 10mmol/hr)
+ Replacements

	0.9% Normal saline	Hartmanns	5% glucose
Na	154 mmol	131 mmol	0
K	0	5 mmol	0
Cl	154 mmol	111 mmol	0
Osmol	303 mosm $/ 1$	279 mosm $/ 1$	253 mosm/l
Other	nil	Lactate 29 Calcium 2	Glucose $50 \mathrm{~g} / \mathrm{l}$

Example... 70kg per day

- Fluid: $1750-2100 \mathrm{ml}$
- Sodium: 70-140mmol
- Potassium: 35-70mmol

Prescribing maintenance fluids

HISTORY	
Input vs Output	
?Limited intake	
?High Losses	
Symptoms	
Urine	EXAMINATION
Co-morbidities	Respiratory Rate $>20 / \mathrm{min}$
C	Systolic Blood Pressure $<100 \mathrm{mmHg}$ Heart Rate >90 bpm Cold peripherally JVP
D	Urine output $<0.5 \mathrm{ml} / \mathrm{kg} / \mathrm{hr}$ Temperature AVPU
Dry mucosae	

INVESTIGATIONS	
Bedside:	Weight
	Fluid
balance	Urine
dipstick	
Bloods:	Electrolytes
Imaging:	Chest X-Ray

Depends on the case: e.g. ?NBM

Calculations

Calculating Drip Rate

What is the drip rate (drops/minute) required for a unit of blood to run over 4 hours using giving set with drop factor of 20 drops $/ \mathrm{ml}$?

$$
1 \text { unit of blood = approx } 400 \mathrm{mls}
$$

Calculating Drip Rate

- Drip rate (drops per minute)
- Volume (ml)
- Time (minute)
- Drop Factor (drops per ml) or (gtt per ml)

Three different methods... use the one you're most comfortable with

1. Know the Equation

What is the drip rate (drops/minute) required for a unit of blood to run over 4 hours using giving set with drop factor of 20 drops $/ \mathrm{ml}$?

Drip rate $=\underline{\text { Volume }} \times$ Drop Factor Time

Drip Rate $=\frac{400 \mathrm{mls}}{240 \mathrm{mins}} \times 20 \mathrm{gtt} / \mathrm{ml}$
$=33$ drops $/ \mathrm{min}$
$=32$ drops $/ \mathrm{min}$ OR 8 drops $/ 15 \mathrm{sec}$

2. Think about the problem

- Drip rate is DROPS PER MINUTE
- This is TOTAL DROPS DIVIDED BY TIME
- TOTAL DROPS same as VOLUME x DROP FACTOR (as this is drops per ml)

What is the drip rate (drops/minute) required for a unit of blood to run over 4 hours using giving set with drop factor of 20 drops $/ \mathrm{ml}$?

TOTAL DROPS $=$ VOLUME X DROP FACTOR $=400 \times 20=8000$
DRIP RATE $=$ TOTAL DROPS $/$ TIME $=8000 / 240=33 \mathrm{drops} / \mathrm{min}$

3. Look at the units

Drip rate
 (drops per minute)

- Volume
- Time
(ml)
(minute)
- Drop Factor
(drops per ml)
Drip rate $\left(\frac{\text { Drops }}{\text { min }}\right)=\frac{\text { Volume }}{\text { Time }}\left(\frac{\operatorname{mot}}{\operatorname{mins}}\right) \times$ Drop Factor $\left(\frac{\text { Drops }}{\text { ml }}\right)$
Drip Rate $=\frac{400 \mathrm{mls}}{240 \mathrm{mins}} \times 20 \mathrm{gtt} / \mathrm{ml}$
$=33$ drops $/ \mathrm{min}$

Converting drip rate to $\mathrm{ml} /$ hour

What is the transfusion rate in $\mathrm{ml} /$ hour of a blood transfusion being run at 40 drops/minute through a giving set with drop factor of 20 drops $/ \mathrm{ml}$?

Transfusi
Drop Factor

1. Know the Equation

Transfusion Rate $=\underline{\text { Drip Rate }}$
 Drop Factor

What is the transfusion rate in $\mathrm{ml} /$ hour of a blood transfusion being run at 40 drops $/$ minute through a giving set with drop factor of $20 \mathrm{gtt} / \mathrm{ml}$?

$$
\begin{aligned}
\text { Transfusion Rate }= & \frac{40 \times 60}{20} \\
& =120 \mathrm{ml} / \mathrm{hr}
\end{aligned}
$$

2. Think about the problem

What is the transfusion rate in $\mathrm{ml} /$ hour of a blood transfusion being run at 40 drops/minute through a giving set with drop factor of 20 drops $/ \mathrm{ml}$?

- 20 drops per ml
- Therefore 40 drops $=2 \mathrm{ml}$
- Therefore 2 ml per minute
- Therefore $2 \times 60=120 \mathrm{ml}$ per hour

3. Look at the units

What is the transfusion rate in $\mathrm{ml} /$ hour of a blood transfusion being run at 40 drops/minute through a giving set with drop factor of 20 drops/ml?

Transfusion Rate	$(\mathrm{Ml} / \mathrm{hr})$
Drip rate	(Drops/minute)
Drop Factor	(Drops/ml)

$\mathrm{Ml} / \mathrm{hr}=\frac{\text { drops }}{\mathrm{hr}}$ divided by $\frac{\text { drops }}{\mathrm{ml}}$
$=120 \mathrm{ml}$ per hour

$$
=\frac{\text { drops }}{\mathrm{hr}} \times \frac{\mathrm{ml}}{\text { drops }}
$$

$$
=40 \times 60 \text { divided by } 20
$$

Try these later...

What is the drip rate (drops/minute) required for a 1 litre bag of saline to run over 5 hours using giving set with drop factor of 10 drops $/ \mathrm{ml}$?

Drip rate $=\frac{\text { Volume }}{\text { Time }} \times$ Drop Factor

$$
\text { Drip rate }=\frac{1000}{60 \times 5} \times 10 \quad=33 \mathrm{gtt} / \mathrm{min}
$$

What is the transfusion rate in $\mathrm{ml} /$ hour of a blood transfusion being run at 20 drops/minute through a giving set with drop factor of 15 drops $/ \mathrm{ml}$?
Transfusion Rate $=\frac{\text { Drip Rate }}{\text { Drop Factor }}=\frac{20 \times 60}{15} \quad=80 \mathrm{ml} / \mathrm{hr}$

Summary

- IV only if not PO
- Calculations...
- Take your time!
- Is your answer sensible?
- Practice!

THANK YOU FOR

LISTENING

Any Questions?

Calculations

1. 0.01% Adrenaline. How many grams of adrenaline are in 1 litre of saline?

- Same as 1:10,000 adrenaline
- So 1 unit adrenaline in 10,000 units saline
- Or 1 g Adrenaline in $10,000 \mathrm{ml}$ saline
- So 0.1 g in 1 litre
- (one decimal place to the right)

2. What should the urine output for a 80 kg patient over 4 hours be?

- $\mathrm{UO}>0.5 \mathrm{ml} / \mathrm{kg} / \mathrm{hr}$
- So at least $0.5 \times 80 \times 4=160 \mathrm{ml}$

Burns

A patient presents with burns from fire. The burns are affecting both his arms, his face and head.

- What percentage body area has been effected?

Herndon Rule of 9s

